Tìm tất cả các giá trị của m để hai đường thẳng \(y = 2x + m + 2\) và \(y = \left( {{m^2} + 1} \right)x + 1\) song song với nhau là

Câu hỏi :

Tất cả các giá trị của m để hai đường thẳng \(y = 2x + m + 2\)  và \(y = \left( {{m^2} + 1} \right)x + 1\) song song với nhau là

A. A. \(m = 1.\)   

B. \(m =  - 1.\) 

C. \(m =  \pm 1.\) 

D. \(m \in \emptyset \)   

* Đáp án

A

* Hướng dẫn giải

Hai đường thẳng \(y = 2x + m + 2\)  và \(y = \left( {{m^2} + 1} \right)x + 1\) song song với nhau khi và chỉ khi \(\left\{ \begin{array}{l}{m^2} + 1 = 2\\m + 2 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} = 1\\m \ne  - 1\end{array} \right. \Leftrightarrow m = 1.\) 

Chọn A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Chu Văn An

Số câu hỏi: 49

Copyright © 2021 HOCTAP247