A. \(\dfrac{{- 4x - 1}}{{{x^2}}}\)
B. \(\dfrac{{- 4x + 1}}{{{x^2}}}\)
C. \(\dfrac{{4x + 1}}{{{x^2}}}\)
D. \(\dfrac{{4x - 1}}{{{x^2}}}\)
D
\(\begin{array}{l}M = \left( {\dfrac{{4x}}{{\sqrt x - 1}} - \dfrac{{\sqrt x - 2}}{{x - 3\sqrt x + 2}}} \right).\dfrac{{\sqrt x - 1}}{{{x^2}}}\\ = \left( {\dfrac{{4x}}{{\sqrt x - 1}} - \dfrac{{\sqrt x - 2}}{{x - \sqrt x - 2\sqrt x + 2}}} \right).\dfrac{{\sqrt x - 1}}{{{x^2}}}\\ = \left( {\dfrac{{4x}}{{\sqrt x - 1}} - \dfrac{{\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 2} \right)}}} \right).\dfrac{{\sqrt x - 1}}{{{x^2}}}\\ = \left( {\dfrac{{4x}}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right).\dfrac{{\sqrt x - 1}}{{{x^2}}}\\ = \dfrac{{4x - 1}}{{\sqrt x - 1}}.\dfrac{{\sqrt x - 1}}{{{x^2}}} = \dfrac{{4x - 1}}{{{x^2}}}.\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247