A. (2;16)
B. (2;15)
C. (1;16)
D. (1;15)
C
Điều kiện: \(xy > 0\)
\(\left\{ \begin{array}{l}\sqrt {xy} - \dfrac{4}{{\sqrt {xy} }} = 3\\x\left( {1 - y} \right) + 15 = 0\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}xy - 4 = 3\sqrt {xy} \\x - xy + 15 = 0\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}xy - 3\sqrt {xy} - 4 = 0\,\,\left( 1 \right)\\x - xy + 15 = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Từ (1) ta có:
\(\begin{array}{l}xy - 3\sqrt {xy} - 4 = 0\\ \Leftrightarrow xy + \sqrt {xy} - 4\sqrt {xy} - 4 = 0\\ \Leftrightarrow \left( {\sqrt {xy} + 1} \right)\left( {\sqrt {xy} - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {xy} = - 1\left( {ktm} \right)\\\sqrt {xy} = 4\left( {tm} \right) \Leftrightarrow xy = 16\end{array} \right.\end{array}\)
Thay xy = 16 vào phương trình (2) của hệ ta được: \(x - 16 + 15 = 0 \Leftrightarrow x = 1\)
Với x = 1 suy ra y = 16
Vậy hệ phương trình có nghiệm duy nhất (1;16).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247