Cho phương trình \({x^2} - 4mx + 4{m^2} - 2 = 0\;\;\;\left( 1 \right)\). Giải phương trình \(\left( 1 \right)\) khi \(m = 1.\)

Câu hỏi :

Cho phương trình \({x^2} - 4mx + 4{m^2} - 2 = 0\;\;\;\left( 1 \right)\). Giải phương trình \(\left( 1 \right)\) khi \(m = 1.\)

A. \(S = \left\{ {1 - \sqrt 2 ;\;\;1 + \sqrt 2 } \right\}\) 

B. \(S = \left\{ {-1 - \sqrt 2 ;\;\;-1 + \sqrt 2 } \right\}\) 

C. \(S = \left\{ {2 - \sqrt 2 ;\;\;2 + \sqrt 2 } \right\}\) 

D. \(S = \left\{ {-2 - \sqrt 2 ;\;\;-2 + \sqrt 2 } \right\}\) 

* Đáp án

C

* Hướng dẫn giải

Với \(m = 1\) ta có phương trình:

\(\begin{array}{l}\left( 1 \right) \Leftrightarrow {x^2} - 4x + 4 - 2 = 0\\ \Leftrightarrow {x^2} - 4x + 2 = 0\end{array}\)

Có \(\Delta ' = 4 - 2 = 2 > 0\)

\( \Rightarrow \) Phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = 2 + \sqrt 2 \\{x_2} = 2 - \sqrt 2 \end{array} \right..\)

Vậy với \(m = 1\) thì phương trình có tập nghiệm \(S = \left\{ {2 - \sqrt 2 ;\;\;2 + \sqrt 2 } \right\}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Cầu Giấy

Số câu hỏi: 47

Copyright © 2021 HOCTAP247