A. BC = 20 cm; AB = 12 cm
B. BC = 18 cm; AB = 12 cm
C. BC = 20 cm; AB = 14 cm
D. BC = 18 cm; AB = 14 cm
A
Xét tam giác \(CAH\) vuông tại \(H\) ta có:
\(\sin \widehat {CAH} = \dfrac{4}{5} \)
\(\Leftrightarrow \dfrac{{HC}}{{AC}} = \dfrac{{HC}}{{16}} = \dfrac{4}{5} \)
\(\Leftrightarrow HC = \dfrac{{4.16}}{5} = 12,8cm.\)
Áp dụng hệ thức lượng cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH\) ta có:
\(A{C^2} = HC.BC \)
\(\Rightarrow BC = \dfrac{{A{C^2}}}{{HC}} = \dfrac{{{{16}^2}}}{{12,8}} = 20\left( {cm} \right)\)
Áp dụng định lý Pi-ta-go trong tam giác vuông ABC ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} \\\Rightarrow A{B^2} = B{C^2} - A{C^2} = {20^2} - {16^2} = 144\\ \Rightarrow AB = 12\left( {cm} \right)\end{array}\)
Vậy BC = 20 cm; AB = 12 cm.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247