Cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH,\) biết \(AC = 16cm\) và \(\sin \widehat {CAH} = \dfrac{4}{5}.\) Tính độ dài các cạnh \(BC,\;AB.\)

Câu hỏi :

Cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH,\) biết \(AC = 16cm\) và \(\sin \widehat {CAH} = \dfrac{4}{5}.\) Tính độ dài các cạnh \(BC,\;AB.\) 

A. BC = 20 cm; AB = 12 cm

B. BC = 18 cm; AB = 12 cm

C. BC = 20 cm; AB = 14 cm

D. BC = 18 cm; AB = 14 cm

* Đáp án

A

* Hướng dẫn giải

Xét tam giác \(CAH\) vuông tại \(H\) ta có:

\(\sin \widehat {CAH} = \dfrac{4}{5} \)

\(\Leftrightarrow \dfrac{{HC}}{{AC}} = \dfrac{{HC}}{{16}} = \dfrac{4}{5} \)

\(\Leftrightarrow HC = \dfrac{{4.16}}{5} = 12,8cm.\)

Áp dụng hệ thức lượng cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH\) ta có:

\(A{C^2} = HC.BC \)

\(\Rightarrow BC = \dfrac{{A{C^2}}}{{HC}} = \dfrac{{{{16}^2}}}{{12,8}} = 20\left( {cm} \right)\)

Áp dụng định lý Pi-ta-go trong tam giác vuông ABC ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} \\\Rightarrow A{B^2} = B{C^2} - A{C^2} = {20^2} - {16^2} = 144\\ \Rightarrow AB = 12\left( {cm} \right)\end{array}\)

Vậy BC = 20 cm; AB = 12 cm.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Cầu Giấy

Số câu hỏi: 47

Copyright © 2021 HOCTAP247