Cho hai đường tròn \(\left( {O;\;4cm} \right)\) và \(\left( {O';\;11cm} \right).\) Biết khoảng cách \(OO' = 2a + 3\;\left( {cm} \right)\) với \(a\) là số thực dương. Tìm \(a\) để h...

Câu hỏi :

Cho hai đường tròn \(\left( {O;\;4cm} \right)\) và \(\left( {O';\;11cm} \right).\) Biết khoảng cách \(OO' = 2a + 3\;\left( {cm} \right)\) với \(a\) là số thực dương. Tìm \(a\) để hai đường tròn tiếp xúc nhau.

A. \(a = 2\) hoặc \(a = 4\) 

B. \(a = 3\) hoặc \(a = 4\) 

C. \(a = 2\) hoặc \(a = 6\) 

D. \(a = 3\) hoặc \(a = 6\) 

* Đáp án

C

* Hướng dẫn giải

Hai đường tròn tiếp xúc ngoài nhau nếu: \(OO' = 4 + 11 = 15 \Rightarrow 2a + 3 = 15 \Leftrightarrow a = 6\;\;\left( {tm} \right).\)

Hai đường tròn tiếp xúc trong nhau nếu: \(OO' = \left| {4 - 11} \right| = 7 \Rightarrow 2a + 3 = 7 \Leftrightarrow a = 2\;\;\left( {tm} \right).\)

Vậy \(a = 2\) hoặc \(a = 6\) thỏa mãn bài toán.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Cầu Giấy

Số câu hỏi: 47

Copyright © 2021 HOCTAP247