A. \({\frac{1}{{\sqrt x \left( {\sqrt x - 2} \right)}}}\)
B. \({\frac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}}}\)
C. \({\frac{1}{{\sqrt x \left( {\sqrt x + 1} \right)}}}\)
D. \({\frac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}}}\)
B
\(\begin{array}{l}A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{x}{{\sqrt x \left( {\sqrt x + 2} \right)}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{{\sqrt x }}{{\sqrt x + 2}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}.\dfrac{{\sqrt x + 2}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\ = \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}}\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247