Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; -...

Câu hỏi :

Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\) 

A. \(y = - 2x - 3\) 

B. \(y = - 2x + 3\) 

C. \(y = 2x + 3\) 

D. \(y = 2x - 3\) 

* Đáp án

D

* Hướng dẫn giải

Đường thẳng (d) song song với đường thẳng (d’) khi và chỉ khi: \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 3\end{array} \right.\) 

Khi đó (d) trở thành: \(y = 2x + b\left( {b \ne 3} \right)\)

Đường thẳng (d’) đi qua điểm \(A\left( {1; - 1} \right)\) nên ta có:

\( - 1 = 2.1 + b \Leftrightarrow b =  - 3\left( {tm} \right)\)

Vậy đường thẳng (d) cần tìm là: \(y = 2x - 3\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Cầu Giấy

Số câu hỏi: 47

Copyright © 2021 HOCTAP247