A. \(CF = a.\)
B. \(CF = \dfrac{{2a\sqrt 5 }}{5}.\)
C. \(CF = \dfrac{{2a\sqrt 3 }}{3}.\)
D. \(CF = \dfrac{{a\sqrt 5 }}{5}.\)
B
Đặt \(BI = R,\;\;CE = r,\;\;KC = x\;\;\left( {0 < x < a} \right).\)
\(\begin{array}{l}BE = \sqrt {{a^2} + \dfrac{{{a^2}}}{4}} = \sqrt {\dfrac{{5{a^2}}}{4}} = \dfrac{{a\sqrt 5 }}{2} \Rightarrow BI = IE = \dfrac{{a\sqrt 5 }}{4} = R.\\CE = \dfrac{a}{2} = r,\;\;KE = \sqrt {C{E^2} - K{C^2}} = \sqrt {{r^2} - {x^2}} .\\KI = \sqrt {I{C^2} - K{C^2}} = \sqrt {{R^2} - {x^2}} .\\ \Rightarrow IE = KE + KI\\ \Leftrightarrow R = \sqrt {{R^2} - {x^2}} + \sqrt {{r^2} - {x^2}} \\ \Leftrightarrow {R^2} = {R^2} + {r^2} - 2{x^2} + 2\sqrt {\left( {{R^2} - {x^2}} \right)\left( {{r^2} - {x^2}} \right)} \\ \Leftrightarrow 2{x^2} - {r^2} = 2\sqrt {{R^2}{r^2} - \left( {{R^2} + {r^2}} \right){x^2} + {x^4}} \\ \Leftrightarrow 4{x^4} - 4{r^2}{x^2} + {r^4} = 4{R^2}{r^2} - 4\left( {{R^2} + {r^2}} \right){x^2} + 4{x^4}\;\;\;\left( {2{x^2} \ge {r^2}} \right)\\ \Leftrightarrow 4\left( {{R^2} + {r^2}} \right){x^2} - 4{r^2}{x^2} = 4{R^2}{r^2} - {r^4}\\ \Leftrightarrow 4{R^2}{x^2} = 4{R^2}{r^2} - {r^4}\\ \Leftrightarrow {x^2} = \dfrac{{4{R^2}{r^2} - {r^4}}}{{4{R^2}}} = \dfrac{{4.\dfrac{{5{a^2}}}{{16}}.\dfrac{{{a^2}}}{4} - \dfrac{{{a^4}}}{{16}}}}{{4.\dfrac{{5{a^2}}}{{16}}}} = \dfrac{{{a^2}}}{5}\\ \Rightarrow KC = x = \dfrac{{a\sqrt 5 }}{5} \Rightarrow FC = 2x = \dfrac{{2a\sqrt 5 }}{5}.\end{array}\)
Chọn B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247