Cùng mặt phẳng tọa độ Oxy cho ba đường thẳng \(y = x + 2;\;y = 2x + 1\) và \(y = \left( {{m^2} - 1} \right)x - 2m + 1.

Câu hỏi :

Trên cùng mặt phẳng tọa độ Oxy cho ba đường thẳng \(y = x + 2;\;y = 2x + 1\) và \(y = \left( {{m^2} - 1} \right)x - 2m + 1.\) Tìm giá trị của m để ba đường thẳng cùng đi qua một điểm.

A. \(m =  - 3\)           

B. \(m \in \left\{ { - 3;\;1} \right\}\)       

C. \(m \in \left\{ { - 1;\;3} \right\}\)        

D. \(m = 1\)  

* Đáp án

C

* Hướng dẫn giải

Tọa độ giao điểm của hai đường thẳng \(y = x + 2;\;y = 2x + 1\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}y = x + 2\\y = 2x + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = x + 2\\x + 2 = 2x + 1\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right. \Rightarrow A\left( {1;\;3} \right).\)

Để bai đường thẳng đã cho cùng đi qua một điểm thì đường thẳng \(y = \left( {{m^2} - 1} \right)x - 2m + 1\) phải đi qua điểm \(A\left( {1;\;\;3} \right).\) Khi đó ta có:

\(\begin{array}{l}3 = \left( {{m^2} - 1} \right).1 - 2m + 1\\ \Leftrightarrow {m^2} - 2m - 3 = 0\\ \Leftrightarrow \left( {m + 1} \right)\left( {m - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 1 = 0\\m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\\m = 3\end{array} \right..\end{array}\)

Vậy \(m \in \left\{ { - 1;\;\;3} \right\}.\) 

Chọn C.

Copyright © 2021 HOCTAP247