Tam giác ABC vuông tại A, đường cao AH \(\left( {H \in BC} \right)\) . Biết BH = 3,6cm và HC = 6,4 cm. Hãy tính độ dài BC, AH. 

Câu hỏi :

Cho tam giác ABC vuông tại A, đường cao AH \(\left( {H \in BC} \right)\) . Biết BH = 3,6cm và HC = 6,4 cm. Tính độ dài BC, AH. 

A. BC = 11 cm; AH = 4,8 cm

B. BC = 11 cm; AH = 5,8 cm

C. BC = 10 cm; AH = 5,8 cm

D. BC = 10 cm; AH = 4,8 cm

* Đáp án

D

* Hướng dẫn giải

Ta có: \(\left( {H \in BC} \right)\) nên : \(BC = BH + HC = 3,6 + 6,4 = 10\left( {cm} \right)\)

Áp dụng hệ thức lượng trong tam giác  ABC vuông tại A với đường cao AH ta có:

\(A{H^2} = BH.HC\)

\(\Rightarrow A{H^2} = 3,6.6,4 = 23,04\)

\(\Rightarrow AH = 4,8\left( {cm} \right)\)

 Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

\(A{B^2} = A{H^2} + B{H^2} \)\(\,= 4,{8^2} + 3,{6^2} = 36 \)

\(\Rightarrow AB = 6\left( {cm} \right)\)

Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:

\(A{C^2} = B{C^2} - A{B^2}\)\(\, = {10^2} - {6^2} = 64\)

\(\Rightarrow AC = 8\left( {cm} \right)\)

Vậy: BC = 10 cm; AH = 4,8 cm

Copyright © 2021 HOCTAP247