Tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\;\left( {H \in BC} \right).\)Biết \(AB = 3a,\;\;AH = \dfrac{{12}}{5}a.\) Tính theo \(a\) độ dài \(AC\) và \(BC.\)

Câu hỏi :

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\;\left( {H \in BC} \right).\)Biết \(AB = 3a,\;\;AH = \dfrac{{12}}{5}a.\) Tính theo \(a\) độ dài \(AC\) và \(BC.\) 

A. \(AC = 5a,\;\;BC = 4a.\) 

B. \(AC = 4a,\;\;BC = 5a.\) 

C. \(AC = 5a,\;\;BC = 6a.\) 

D. \(AC = 6a,\;\;BC = 5a.\) 

* Đáp án

A

* Hướng dẫn giải

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\;\left( {H \in BC} \right).\)Biết \(AB = 3a,\;\;AH = \dfrac{{12}}{5}a.\) Tính theo \(a\) độ dài \(AC\) và \(BC.\) 

 

Áp dụng định lý Pi-ta-go cho tam giác \(ABH\) vuông tại \(H\) ta có:

\(B{H^2} = A{B^2} - A{H^2} = 9{a^2} - {\left( {\dfrac{{12}}{5}a} \right)^2} = \dfrac{{81{a^2}}}{{25}} \)

\(\Rightarrow BH = \dfrac{{9a}}{5}.\)

Áp dụng hệ thức lượng cho tam giác \(ABC\) vuông tại \(A\) với đường cao \(AH\;\)ta có:

\(\begin{array}{l}A{H^2} = BH.HC \\\Leftrightarrow HC = \dfrac{{A{H^2}}}{{HB}} = {\left( {\dfrac{{12}}{5}a} \right)^2}:\dfrac{{9a}}{5} = \dfrac{{16a}}{5}.\\ \Rightarrow BC = BH + HC = \dfrac{{9a}}{5} + \dfrac{{16a}}{5} = 5a.\end{array}\)

Áp dụng định lý Pi-ta-go cho tam giác \(ABC\) vuông tại \(A\) ta có:

\(A{C^2} = B{C^2} - A{B^2} = {\left( {5a} \right)^2} - {\left( {3a} \right)^2} = {\left( {4a} \right)^2} \)

\(\Rightarrow AC = 4a.\)

Vậy \(AC = 4a,\;\;BC = 5a.\)

Copyright © 2021 HOCTAP247