Tìm các giá trị của m để phương trình x^2 – 2mx + 2m − 1 = 0 có hai

Câu hỏi :

Tìm các giá trị của m để phương trình x2 – 2mx + 2m − 1 = 0 có hai nghiệm x1; x2 thỏa mãn x12+ x22=10

A. m = 2

B. m = -1

C. m = −3

D. Cả A và B

* Đáp án

* Hướng dẫn giải

Phương trình x2 – 2mx + 2m − 1 = 0 có a = 1  0 và  = 4m2 – 4 (2m – 1)

=4m28m+4=4(m1)2 0; m

Phương trình có hai nghiệm x1; x2 với mọi m

Theo hệ thức Vi-ét ta có x1+x2=2mx1.x2=2m1

Xét 

 x12+x22=x1+x22-2x1x2

4m22(2m1) = 10

4m24m+210=04m2 4m8=0m2m2=0

 m22m+m2=0m(m2)+(m2)=0(m+1)(m2)=0

m=2m=1

Vậy m = 2 và m = −1 là các giá trị cần tìm

Đáp án: D

Copyright © 2021 HOCTAP247