Tìm giá trị của m để phương trình x^2 – 2(m – 2)x + 2m – 5 = 0 hai nghiệm

Câu hỏi :

Tìm giá trị của m để phương trình x2 – 2(m – 2)x + 2m – 5 = 0 hai nghiệm x1; x2 thỏa mãn x1(1x2)+x2(1  x1)<4

A. m > 1

B. m < 0

C. m > 2

D. m < 3

* Đáp án

* Hướng dẫn giải

Phương trình x2 – 2(m – 2)x + 2m – 5 = 0 có a = 1  0 và

'=(m2)22m+5=m26m+9=(m3)2 0;m

Nên phương trình luôn có hai nghiệm x1; x2

Theo hệ thức Vi-ét ta có x1+x2=2m4x1.x2=2m5

Xét x1(1x2)+x2(1x1)<4(x1+x2)  2x1. x24<0

2m – 4 – 2(2m – 5) – 4 < 0 −2m + 2 < 0 m > 1

Vậy m > 1 là giá trị cần tìm

Đáp án: A

Copyright © 2021 HOCTAP247