Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). G

Câu hỏi :

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) . Gọi M là trung điểm của cạnh BC N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:

* Đáp án

* Hướng dẫn giải

a)    Chứng minh BA . BC = 2BD . BE

· Ta có: DBA+ ABC = 900 , EBM +ABC = 900

Þ DBA =EBM (1)

· Ta có: DONA = DOME (c-g-c)

Þ EAN= MEO

Ta lại có: DAB +BAE+ EAN  = 900, và BEM +BAE +MEO  = 900

Þ DAB= BEM (2)

· Từ (1) và (2) suy ra DBDA đồng dạng DBME (g-g)

=>BDBM=BABE=>DB.BE=BA.BM=BA.BC2=>2BD.BE=BA.BC

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

19 đề ôn thi vào 10 chuyên hay có lời giải !!

Số câu hỏi: 160

Copyright © 2021 HOCTAP247