Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O

Câu hỏi :

Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
1.     Tính số đo góc BIF

* Đáp án

* Hướng dẫn giải

1.     Vì BD, BF là các tiếp tuyến của (O) nên OD BD, OF BF.

Xét 2 tam giác vuông OBD và OBF có

OB chungOBD=OBF(gt)=>ΔOBD=ΔOBF (cạnh huyền–góc nhọn)

BD = BF

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.DOE=90o

Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:

DFE=12DOE=45o

∆ KIF vuông cân tại K.

=>BIF=45o

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

19 đề ôn thi vào 10 chuyên hay có lời giải !!

Số câu hỏi: 160

Copyright © 2021 HOCTAP247