Cho a, b, c là các số dương thỏa mãn điều kiện 1/a+1/b+1/c<=3

Câu hỏi :

Cho a, b, c là các số dương thỏa mãn điều kiện 1a+1b+1c3 . Chứng minh rằng: a1+b2+b1+c2+c1+a2+12(ab+bc+ca)3

* Đáp án

* Hướng dẫn giải

Ta chứng minh BĐT

(a+b+c)(1a+1b+1c)9(*)(*)<=>3+(ab+ba)+(bc+cb)+(ca+ac)9

Áp dụng BĐT Cô – si cho hai số dương ta có:

ab+ba2bc+cb2ca+ac2=>(*) đúng

 

=>9a+b+c1a+1b+1c3=>a+b+c3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có 1+b22b

Ta có: a1+b2=aab21+b2aab22b=aab2(1)

 

Tương tự ta có: 

b1+c2bbc2(2)c1+a2cca2(3)

 

Cộng từng vế của (1), (2) và (3) ta có:

a1+b2+b1+c2+c1+a2a+b+c12(ab+bc+ca)=>a1+b2+b1+c2+c1+a2+12(ab+bc+ca)a+b+c3

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

19 đề ôn thi vào 10 chuyên hay có lời giải !!

Số câu hỏi: 160

Copyright © 2021 HOCTAP247