Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Rút gọn các biểu thức sau:

a) \(\left( {x + 2} \right)\left( {x - 2} \right) - \left( {x - 3} \right)\left( {x + 1} \right)\);

b) \({\left( {2x + 1} \right)^2} + {\left( {3x - 1} \right)^2} \)\(+ 2\left( {2x + 1} \right)\left( {3x - 1} \right)\) .

Hướng dẫn giải

Nhân đa thức với đa thức sau đó ta thu gọn các đa thức đồng dạng lại với nhau.

Lời giải chi tiết

a) \(\left( {x + 2} \right)\left( {x - 2} \right) - \left( {x - 3} \right)\left( {x + 1} \right) \)

\(= {x^2} - {2^2} - \left( {{x^2} + x - 3x - 3} \right)\)

\(={x^2} - 4 - {x^2} - x + 3x + 3\)

\(=2x-1\)  

b) \({\left( {2x + 1} \right)^2} + {\left( {3x - 1} \right)^2} \)\(+ 2\left( {2x + 1} \right)\left( {3x - 1} \right)\)

\(={\left( {2x + 1} \right)^2} + 2.\left( {2x + 1} \right)\left( {3x - 1} \right) \)\(+ {\left( {3x - 1} \right)^2}\)

\(={\left[ {\left( {2x + 1} \right) + \left( {3x - 1} \right)} \right]^2}\)

 \(={\left( {2x + 1 + 3x - 1} \right)^2}\)

\(={\left( {5x} \right)^2} = 25{x^2}\)

Copyright © 2021 HOCTAP247