Bài 1. Rút gọn các đa thức sau biểu thức:
a) \(A = \left( {{x^2} + 3} \right)\left( {{x^4} - 3{x^2} + 9} \right) - {\left( {{x^2} + 3} \right)^3}.\)
b) \(B = {\left( {x - 1} \right)^3} - {\left( {x + 1} \right)^3} + 6\left( {x + 1} \right)\left( {x - 1} \right).\)
Bài 2. Phân tích các đa thức sau thành nhân tử:
a) \(81{a^2} - 6bc - 9{b^2} - {c^2}\)
b) \({a^2} - 6{a^2} + 12a - 8.\)
Bài 3. Tìm x, biết:
\({\left( {x - 2} \right)^3} - \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) + \left( {2x - 3} \right)\left( {3x - 2} \right) = 0.\)
Bài 4. Tìm m để đa thức \(A\left( x \right) = {x^3} - 2{x^3} + x - m + 2\) chia cho đa thức \(B(x) = x + 3\) có dư bằng 5.
Bài 5. Cho \(a + b = 1.\) Tính \({a^3} + {b^3} + 3ab.\)
Bài 1.
a) \(A = {\left( {{x^2}} \right)^3} + {3^3} - {\left( {{x^2} + 3} \right)^3}\)
\(={x^6} + 27 - {x^6} - 9{x^4} - 27{x^2} - 27 \)
\(= - 9{x^4} - 27{x^2}.\)
b) \(B = {x^3} - 3{x^2} + 3x - 1 - {x^3} - 3{x^2} - 3x - 1 + 6{x^2} - 6 \)\(\;= - 8.\)
Bài 2.
a) \(81{a^3} - 6bc - 9{b^2} - {c^2} \)
\(= 81{a^2} - \left( {9{b^2} + 6bc + {c^2}} \right)\)
\(={\left( {9a} \right)^2} - {\left( {3b + c} \right)^2}\)
\(= \left( {9a + 3b + c} \right)\left( {9a - 3b - c} \right).\)
b) \({a^3} - 6{a^2} + 12a - 8 \)
\(= {a^3} - 3{a^2}.2 + 3a{.2^2} - {2^3} \)
\(= {\left( {a - 2} \right)^3}.\)
Bài 3. Ta có:
\({\left( {x - 2} \right)^3} - \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) + \left( {2x - 3} \right)\left( {3x - 2} \right)\)
\(={x^3} - 6{x^2} + 12x - 8 - {x^3} - 8 + 6{x^2} - 4x - 9x + 6\)
\(= - x - 10.\)
Vậy \( - x - 10 = 0 \Rightarrow x = - 10.\)
A(x) chia cho B(x) có dư bằng 5 \( \Rightarrow - m - 46 = 5 \Rightarrow m = - 51.\)
Bài 5. Ta có: \(a + b = 1 \Rightarrow b = 1 - a.\)
Vậy
\({a^3} + {b^3} + 3ab \)
\(= {a^3} + {\left( {1 - a} \right)^3} + 3a\left( {1 - a} \right)\)
\(={a^3} + 1 - 3a + 3{a^2} - {a^3} + 3a - 3{a^2}\)
\(= 1.\)
Copyright © 2021 HOCTAP247