Bài 35 trang 56 SGK toán 9 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

 Giải các phương trình:

a) \(\frac{(x+ 3)(x-3)}{3}+ 2 = x(1 - x)\);   

b) \(\frac{x+ 2}{x-5} + 3 = \frac{6}{2-x}\);

c) \(\frac{4}{x+1}\) = \(\frac{-x^{2}-x+2}{(x+1)(x+2)}\)


Hướng dẫn giải

Phương pháp giải phương trình chứa ẩn ở mẫu thức :

Bước 1: Tìm điều kiện xác định của phương trình

Bước 2: Quy đồng mẫu thức 2 vế rồi khử mẫu

Bước 3: giải phương trình vừa nhận được

Bước 4: Đối chiếu kết quả với điều kiện  xác định của phương trình sau đó kết luận.

Lời giải chi tiết

a) \(\frac{(x+ 3)(x-3)}{3}+ 2 = x(1 - x)\)

\( \Leftrightarrow {x^2} - 9 + 6 = 3x{\rm{  - }}3{x^2}\)

\(\Leftrightarrow 4{x^2}{\rm{  - }}3x{\rm{  - }}3 = 0;\Delta  = 57>0\)

Vậy phương trình đã cho có 2 nghiệm phân biệt là:

\({x_1} = {\rm{ }}{{3 + \sqrt {57} } \over 8},{x_2} = {\rm{ }}{{3 - \sqrt {57} } \over 8}\)

b) \(\frac{x+ 2}{x-5}\) + 3 = \(\frac{6}{2-x}\). Điều kiện \(x ≠ 2, x ≠ 5\).

\((x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)\)

\(\Leftrightarrow4 - {x^2} + 3\left( {2x - {x^2} - 10 + 5x} \right) = 6x - 30\)

\( \Leftrightarrow 4{\rm{  - }}{x^2}{\rm{  - }}3{x^2} + 21x{\rm{  - }}30 = 6x{\rm{  - }}30\)

\(\Leftrightarrow 4{x^2}{\rm{  - }}15x{\rm{  - }}4 = 0,\)

\(\Delta  = 225 + 64 = 289 > 0,\sqrt \Delta   = 17\)

Khi đó phương trình đã cho có 2 nghiệm là \({x_1} = {\rm{ }} - {1 \over 4},{x_2} = 4\)

c) \(\frac{4}{x+1}\) = \(\frac{-x^{2}-x+2}{(x+1)(x+2)}\). Điều kiện: \(x ≠ -1; x ≠ -2\)

Phương trình tương đương:\(4\left( {x{\rm{ }} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }} - {x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}2\)

\({ \Leftrightarrow {\rm{ }}4x{\rm{ }} + {\rm{ }}8{\rm{ }} = {\rm{ }}2{\rm{ }}-{\rm{ }}{x^2}-{\rm{ }}x}\)

\({ \Leftrightarrow {\rm{ }}{x^2} + {\rm{ }}5x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0}\)

Ta có: \(\Delta  = {5^2} - 4.6 = 1 > 0 \Rightarrow \sqrt \Delta   = 1\)

Khi đó phương trình có 2 nghiệm phân biệt là: \({x_1} = \frac{{ - 5 - 1}}{2} =  - 3\) ; \({x_2} = \frac{{ - 5 + 1}}{2} =  - 2\)

Đối chiếu với điều kiện ta loại nghiệm x = -2;

Vậy phương trình đã cho có 1 nghiệm x = -3

Copyright © 2021 HOCTAP247