Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Bài 2. Liên hệ giữa cung và dây Đề kiểm 15 phút - Đề số 3 - Bài 2 - Chương 3 - Hình học 9

Đề kiểm 15 phút - Đề số 3 - Bài 2 - Chương 3 - Hình học 9

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Trên dây cung AB của một đường tròn (O), có hai điểm C và D chia dây này ba đoạn bằng nhau: \(AC = CD = DB.\) Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng các điểm E và F chia cung nhỏ AB thành ba cung : \(\overparen{AE}, \overparen{ EF}, \overparen{FB}\) thỏa mãn điều kiện: \(\overparen{AE} = \overparen{FB}<\overparen{EF}\)

Hướng dẫn giải

\(∆AOB\) cân (\(OA = OB\))

\( \Rightarrow \widehat {OAB} = \widehat {OBA}\)

\( AO = BO\) (gt)

\(  AC = DB\) (gt)

Vậy \(∆AOC = ∆BOD\) (c.g.c)

\( \Rightarrow \widehat {AOC} = \widehat {BOD}\) và \(OC = OD\)

\( \Rightarrow \overparen{AE} = \overparen{BF}\)

Vì D nằm trong đường tròn \( \Rightarrow OA > OD\)

Từ C vẽ CC’ // OD. Khi đó CC’ là đường trung bình của ∆AOD

\( \Rightarrow CC' = \dfrac{{OD} }{ 2}\) và \(C'O = \dfrac{{AO}}{2}\)

\(\widehat {C'CO} = \widehat {COD}\)  (so le trong)

Ta có: \(CC’

\(\widehat {AOC}

\( \Rightarrow \overparen{AE}\overparen{ef}\)p>

\widehat>

’o>

Copyright © 2021 HOCTAP247