Giải các phương trình:
a) \(\sin (x + 1) = {2 \over 3}\)
b) \({\sin ^2}2x = {1 \over 2}\)
c) \({\cot ^2}{x \over 2} = {1 \over 3}\)
d) \(\tan ({\pi \over {12}} + 12x) = - \sqrt 3 \)
a) Giải phương trình lượng giác cơ bản của hàm sin.
b) Sử dụng công thức hạ bậc.
c) Lấy căn bậc hai hai vế. Giải phương trình lượng giác cơ bản của hàm cot.
d) Giải phương trình lượng giác cơ bản của hàm tan.
Lời giải chi tiết
a) Ta có:
\(\eqalign{
& \sin (x + 1) = {2 \over 3} \cr
& \Leftrightarrow \left[ \matrix{
x + 1 = \arcsin {2 \over 3} + k2\pi \hfill \cr
x + 1 = \pi - \arcsin {2 \over 3} + k2\pi \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = - 1 + \arcsin {2 \over 3} + k2\pi \hfill \cr
x = - 1 + \pi - \arcsin {2 \over 3} + k2\pi \hfill \cr} \right.;k \in \mathbb{Z} \cr} \)
Vậy nghiệm của phương trình là \(x = - 1 + \arcsin \frac{2}{3} + k2\pi ;\) \(x = - 1 + \pi - \arcsin \frac{2}{3} + k2\pi \,\,\left( {k \in Z} \right)\)
b) Ta có:
\(\eqalign{
& {\sin ^2}2x = {1 \over 2} \Leftrightarrow {{1 - \cos 4x} \over 2} = {1 \over 2} \cr
& \Leftrightarrow \cos 4x = 0 \Leftrightarrow 4x = {\pi \over 2} + k\pi \cr
& \Leftrightarrow x = {\pi \over 8} + k{\pi \over 4},k \in \mathbb{Z} \cr} \)
Vậy nghiệm của phương trình là \(x = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\)
c) Ta có:
\(\eqalign{
& {\cot ^2}{x \over 2} = {1 \over 3} \Leftrightarrow \left[ \matrix{
\cot {x \over 2} = {{\sqrt 3 } \over 3} \,\,\,\,\,\,\,\,\,(1) \hfill \cr
\cot {x \over 2} = - {{\sqrt 3 } \over 3}\,\,\,\,(2) \hfill \cr} \right. \cr
& (1) \Leftrightarrow \cot {x \over 2} = \cot {\pi \over 3} \Leftrightarrow {x \over 2} = {\pi \over 3} + k\pi \cr
& \Leftrightarrow x = {{2\pi } \over 3} + k2\pi ,k \in \mathbb{Z} \cr
& (2) \Leftrightarrow \cot {x \over 2} = \cot ( - {\pi \over 3}) \Leftrightarrow {x \over 2} = - {\pi \over 3} + k\pi \cr
& \Leftrightarrow x = - {{2\pi } \over 3} + k2\pi ;k \in \mathbb{Z} \cr} \)
Vậy nghiệm của phương trình là \(x = \pm \frac{{2\pi }}{3} + k2\pi \,\,\left( {k \in Z} \right)\)
d) Ta có:
\( \tan ({\pi \over {12}} + 12x) = - \sqrt 3\)
\(\Leftrightarrow \tan ({\pi \over {12}} + 12x ) = \tan ({{ - \pi } \over 3})\)
\(\Leftrightarrow {\pi \over {12}} + 12x = {{ - \pi } \over 3} + k\pi\)
\(\Leftrightarrow x = - {{5\pi } \over {144}} + k{\pi \over {12}},k \in \mathbb{Z} \)
Vậy nghiệm của phương trình đã cho là: \(x = {{ - 5\pi } \over {144}} + {{k\pi } \over {12}},k \in \mathbb{Z}\)
Copyright © 2021 HOCTAP247