Tính:
\({4^{\log _2^{{1 \over 2}}}};\,\,{(\,{1 \over {25}})^{\log _5^{{1 \over 3}}}}\)
\(\eqalign{
& {4^{\log _2^{{1 \over 2}}}} = {2^{{2^{\log _2^{{1 \over 2}}}}}} = {({2^{^{\log _2^{{1 \over 2}}}}})^2} = {({1 \over 2})^2} = {1 \over 4} \cr
& {(\,{1 \over {25}})^{\log _5^{{1 \over 3}}}} = {5^{ - {2^{\log _5^{{1 \over 3}}}}}} = {({5^{^{\log _5^{{1 \over 3}}}}})^{ - 2}} = {({1 \over 3})^{ - 2}} = 9 \cr} \)
Copyright © 2021 HOCTAP247