Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 3. Lôgarit Bài 32 trang 92 SGK Đại số và Giải tích 12 Nâng cao

Bài 32 trang 92 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 32. Hãy tính:

a) \({\log _8}12 - {\log _8}15 + {\log _8}20;\) 

b) \({1 \over 2}{\log _7}36 - {\log _7}14 - 3{\log _7}\root 3 \of {21} ;\)

c) \({{{{\log }_5}36 - {{\log }_5}12} \over {{{\log }_5}9}};\) 

d) \({36^{{{\log }_6}5}} + {10^{1 - \log 2}} - {8^{{{\log }_2}3}}.\)

Hướng dẫn giải

a) \({\log _8}12 - {\log _8}15 + {\log _8}20 = {\log _8}{{12.20} \over {15}} = {\log _8}16 = {\log _{{2^3}}}{2^4} = {4 \over 3}\)

b) \({1 \over 2}{\log _7}36 - {\log _7}14 - 3{\log _7}\root 3 \of {21}  = {\log _7}6 - {\log _7}14 - {\log _7}21\)

\( = {\log _7}{6 \over {14.21}} = {\log _7}{1 \over {49}} = {\log _7}{7^{ - 2}} =  - 2\)

c) \({{{{\log }_5}36 - {{\log }_5}12} \over {{{\log }_5}9}} = {{{{\log }_5}{{36} \over {12}}} \over {{{\log }_5}{3^2}}} = {{{{\log }_5}3} \over {2{{\log }_5}3}} = {1 \over 2}\)

d) \({36^{{{\log }_6}5}} + {10^{1 - \log 2}} - {8^{{{\log }_2}3}} = {6^{2{{\log }_6}5}} + {10^{{{\log }_{10}}{{10} \over 2}}} - {2^{{{\log }_2}27}} = {6^{{{\log }_6}{5^2}}} + {10^{{{\log }_{10}}5}} - {2^{{{\log }_2}27}}=25 + 5 - 27 = 3\)

Copyright © 2021 HOCTAP247