Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 3. Lôgarit Bài 38 trang 93 SGK Đại số và Giải tích 12 Nâng cao

Bài 38 trang 93 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 38. Đơn giản các biểu thức:

a) \(\log {1 \over 8} + {1 \over 2}\log 4 + 4\log \sqrt 2 \);

b) \(\log {4 \over 9} + {1 \over 2}\log 36 + {3 \over 2}\log {9 \over 2}\);

c) \(\log 72 - 2\log {{27} \over {256}} + \log \sqrt {108} \);

d) \(\log {1 \over 8} - \log 0,375 + 2\log \sqrt {0,5625} \).

Hướng dẫn giải

a) \(\log {1 \over 8} + {1 \over 2}\log 4 + 4\log \sqrt 2  =  - \log 8 + \log 2 + \log 4 =  - \log 8 + \log 8 = 0\)

b) \(\log {4 \over 9} + {1 \over 2}\log 36 + {3 \over 2}\log {9 \over 2} = \log \left( {{4 \over 9}.6\sqrt {{{\left( {{9 \over 2}} \right)}^3}} } \right) = \log \left( {{4 \over 9}.6.{{{3^3}} \over 2}.\sqrt {{1 \over 2}} } \right)\)

\( = \log \left( {{4 \over 9}{{.3}^4}.{{\sqrt 2 } \over 2}} \right) = \log \left( {18\sqrt 2 } \right)\)

c) \(\log 72 - 2\log {{27} \over {256}} + \log \sqrt {108}  = \log \left( {{2^3}{{.3}^2}} \right) - \log {{{3^6}} \over {{2^{16}}}} + \log \sqrt {{2^2}{{.3}^3}} \)

\( = \log \left( {{2^3}{{.3}^2}:{{{3^6}} \over {{2^{16}}}}{{.2.3}^{{3 \over 2}}}} \right) = \log \left( {{2^{20}}{{.3}^{ - {5 \over 2}}}} \right) = 20\log 2 - {5 \over 2}\log 3\).

d) \(\log {1 \over 8} - \log 0,375 + 2\log \sqrt {0,5625}  = \log {2^{ - 3}} - \log \left( {0,{5^3}.3} \right) + \log \left( {0,{5^4}{{.3}^2}} \right)\)

\( = \log {2^{ - 3}} - \log {2^{ - 3}} - \log 3 + 2\log {2^{ - 2}} + 2\log 3 = \log {2^{ - 4}} + \log 3 = \log {3 \over {16}}\).

Copyright © 2021 HOCTAP247