Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Trong hệ toạ độ \(Oxyz\), cho điểm \(M(2 ; 1 ; 0)\) và mặt phẳng \((α): x + 3y - z - 27 = 0\). Tìm toạ độ điểm \(M'\) đối xứng với \(M\) qua \((α)\).

Hướng dẫn giải

Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \((α)\) và \(M'\) là điểm đối xứng của \(M\) qua \((α)\) thì \(H\) là trung điểm của đoạn thẳng \(MM'\).

+) Xác định tọa độ hình chiếu H của M trên mặ phẳng \((\alpha)\).

+) Xác định tọa độ điểm M': \(\left\{ \begin{array}{l}{x_{M'}} = 2{x_H} - {x_M}\\{y_{M'}} = 2{y_H} - {y_M}\\{z_{M'}} = 2{z_H} - {z_M}\end{array} \right.\)

Lời giải chi tiết

Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \((α)\) và \(M'\) là điểm đối xứng của \(M\) qua \((α)\) thì \(H\) là trung điểm của đoạn thẳng \(MM'\). Xét đường thẳng \(∆\) qua \(M\) và \(∆\) vuông góc với \((α)\).

Phương trình \(∆\) đi qua M và nhận \({\overrightarrow n _{\left( \alpha  \right)}} = \left( {1;3; - 1} \right)\) là 1 VTCP có dạng:\(\left\{ \matrix{x = 2 + t \hfill \cr y = 1 + 3t \hfill \cr z = - t \hfill \cr} \right.\)

Gọi \(H = \Delta  \cap \left( \alpha  \right) \Rightarrow H\left( {2 + t;1 + 3t; - t} \right)\)

Thay tọa độ điểm H vào phương trình \((\alpha)\) ta được: \(2+t+3(1+3t)-(-t)-27=0\Rightarrow 11t=22 \Rightarrow t=2\)

\(\Rightarrow H(4; 7; -2)\) 

\(M\) và \(M'\) đối xứng nhau qua \((α)\) nên H là trung điểm của MM'

\(\left\{ \begin{array}{l}
{x_{M'}} = 2{x_H} - {x_M} = 6\\
{y_{M'}} = 2{y_H} - {y_M} = 13\\
{z_{M'}} = 2{z_H} - {z_M} = - 4
\end{array} \right. \Rightarrow M'\left( {6;13; - 4} \right)\)

Copyright © 2021 HOCTAP247