Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Trong hệ toạ độ \(Oxyz\), cho điểm \(A(-1 ; 2 ; -3)\), vectơ \(\vec a= (6 ; -2 ; -3)\) và đường thẳng \(d\) có phương trình: \(\left\{ \matrix{x = 1 + 3t \hfill \cr y = - 1 + 2t \hfill \cr z = 3 - 5t. \hfill \cr} \right.\)

a) Viết phương trình mặt phẳng \((α)\) chứa điểm \(A\) và vuông góc với giá của \(\vec a\).

b) Tìm giao điểm của \(d\) và \((α)\).

c) Viết phương trình đường thẳng \(∆\) đi qua điểm \(A\), vuông góc với giá của \(\vec a\) và cắt đường thẳng \(d\).

Hướng dẫn giải

a) Viết phương trình mặt phẳng biết điểm đi qua và 1 VTPT.

b) Tham số hóa tọa độ giao điểm và thay vào phương trình mặt phẳng \((\alpha)\).

c) Đường thẳng đi qua A vuông góc với giá của \(\overrightarrow a \) và cắt đường thẳng d chính là đường thẳng AM.

Lời giải chi tiết

a) Mặt phẳng \((α)\) vuông góc với giá của \(\vec a\) nhận \(\vec a\) làm vectơ pháp tuyến; \((α)\) đi qua \(A(-1; 2; -3)\) có phương trình:

\(6(x + 1) - 2(y - 2) - 3(z + 3) = 0\) \( \Leftrightarrow  6x - 2y - 3z + 1 = 0\)

b) Gọi \(M = d \cap \left( \alpha  \right) \Rightarrow M \in d \Rightarrow M\left( {1 + 3t; - 1 + 2t;3 - 5t} \right)\)

Thay tọa độ điểm M vào phương trình \((α)\) ta có:

\(6.(1 + 3t) - 2(-1 + 2t) - 3(3 - 5t) + 1 = 0\) \( \Leftrightarrow  t = 0\).

Từ đây ta tính được toạ độ giao điểm \(M\) của \(d\) và \((α)\): \(M(1; -1; 3)\).

c) Đường thẳng \(∆\) đi qua A và vuông góc với giá của \(\overrightarrow a \) nên \(\Delta  \subset \left( \alpha  \right)\). Hơn nữa \(∆\) cắt d nên  \(∆\)  đi qua M.

Do đó đường thẳng \(∆\) cần tìm chính là đường thẳng \(AM\) nhận vectơ \(\overrightarrow {AM}  = (2; -3; 6)\) làm vectơ chỉ phương.

Phương trình đường thẳng \(AM\): \(\left\{ \matrix{x = 1 + 2t \hfill \cr y = - 1 - 3t \hfill \cr z = 3 + 6t \hfill \cr} \right.\)

 

Copyright © 2021 HOCTAP247