Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 1. Số phức Bài 11 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Bài 11 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 11

Hỏi mỗi số sau đây là số thực hay số ảo (z là số phức tùy ý cho trước sao cho biểu thức xác định)?

\({z^2} + {\left( {\overline z } \right)^2}\);               \({{z - \overline z } \over {{z^3} + {{\left( {\overline z } \right)}^3}}}\);                     \({{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}\)

Hướng dẫn giải

* Ta có \(\overline {{z^2} + {{\left( {\overline z } \right)}^2}}  = \overline {{z^2}}  + \overline {{{\left( {\overline z } \right)}^2}}  = {\left( {\overline z } \right)^2} + {\left( {\overline {\overline z } } \right)^2} = {\left( {\overline z } \right)^2} + {z^2}\)

\( \Rightarrow {z^2} + {\left( {\overline z } \right)^2}\)  là số thực.

Cách khác: Gọi \(z=a+bi\)

Ta có: \({z^2} + {\overline z ^2} = {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 2\left( {{a^2} - {b^2}} \right)\) là số thực

* \(\overline {\left( {{{z - \overline z } \over {{z^3} + {{\left( {\overline z } \right)}^3}}}} \right)}  = {{\overline z  - z} \over {{{\left( {\overline z } \right)}^3} + {z^3}}} =  - {{z - \overline z } \over {{z^3} + {({\overline z })^3}}}\)  \(\Rightarrow {{z - \overline z } \over {{z^3} + {({\overline z })^3}}}\) là số ảo.

*  \(\overline {\left( {{{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}} \right)}  = {{{({\overline z })^2} - {z^2}} \over {1 + \overline z z}} =  - {{{z^2}-{({\overline z })^2}} \over {1 + \overline z .z}} \Rightarrow {{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}\) là số ảo.

Copyright © 2021 HOCTAP247