Bài 3
Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ \(O\) trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.
Điểm A biểu diễn số \(i\).
F có tọa độ \(\left( {\cos {\pi \over 6};\sin {\pi \over 6}} \right) = \left( {{{\sqrt 3 } \over 2};{1 \over 2}} \right)\) nên F biểu diễn số phức \({{\sqrt 3 } \over 2} + {1 \over 2}i.\)
E đối xứng với F qua \(Ox\) nên E biểu diễn số phức \({{\sqrt 3 } \over 2} - {1 \over 2}i.\)
B đối xứng với E qua O nên B biểu diễn số \( - {{\sqrt 3 } \over 2} + {1 \over 2}i.\)
C đối xứng với F qua O nên C biểu diễn số phức \( - {{\sqrt 3 } \over 2} - {1 \over 2}i.\)
D đối xứng với A qua O nên D biểu diễn số phức \(–i\).
Copyright © 2021 HOCTAP247