A \(\begin{array}{l}\sin ABD = \frac{{2\sqrt 5 }}{5}\\\cos ABD = \frac{\sqrt 5}{{5 }}\\\tan ABD = 2\\\cot ABD = \frac{1}{2}\end{array}\)
B \(\begin{array}{*{20}{l}}
{\sin ABD = \frac{{2\sqrt {11} }}{{11}}}\\
{\cos ABD = \frac{{\sqrt {11} }}{{11}}}\\
{\tan ABD = 2}\\
{\cot ABD = \frac{1}{2}}
\end{array}\)
C \(\begin{array}{*{20}{l}}
{\sin ABD = \frac{{\sqrt {11} }}{{11}}}\\
{\cos ABD = \frac{{2\sqrt {11} }}{{11}}}\\
{\tan ABD = \frac{1}{2}}\\
{\cot ABD = 2}
\end{array}\)
D \(\begin{array}{*{20}{l}}
{\sin ABD = \frac{{\sqrt 5 }}{5}}\\
{\cos ABD = \frac{{2\sqrt 5 }}{5}}\\
{\tan ABD = \frac{1}{2}}\\
{\cot ABD = 2}
\end{array}\)
A 0
B 1
C 2
D -1
A a) \(\sin C = \frac{{\sqrt 6 }}{3};\,\,\,\cos C = \frac{{\sqrt 3 }}{3}\)
\(\tan C = \sqrt 2 ;\,\,\,\cot C = \frac{{\sqrt 2 }}{2}\)
b) \(AC = 6;\,\,BC = 3\sqrt 6 ;\,\,AB = 3\sqrt 2 \)
B a) \(\sin C = \frac{{\sqrt 6 }}{3};\,\,\,\cos C = \frac{{\sqrt 3 }}{3}\)
\(\tan C = \sqrt 2 ;\,\,\,\cot C = \frac{{\sqrt 2 }}{2}\)
b) \(AC = 6;\,\,BC = 3\sqrt 2 ;\,\,AB = 2\sqrt 3 \)
C a) \(\sin C = \frac{{\sqrt 3 }}{3};\,\,\,\cos C = \frac{{\sqrt 6 }}{3}\)
\(\tan C = \frac{1}{{\sqrt 2 }};\,\,\,\cot C = \sqrt 2 \)
b) \(AC = 6;\,\,BC = 3\sqrt 6 ;\,\,AB = 3\sqrt 2 \)
D a) \(\sin C = \frac{{\sqrt 3 }}{3};\,\,\,\cos C = \frac{{\sqrt 6 }}{3}\)
\(\tan C = \frac{1}{{\sqrt 2 }};\,\,\,\cot C = \sqrt 2 \)
b) \(AC = 6;\,\,BC = 3\sqrt 2 ;\,\,AB = 2\sqrt 3 \)
A -2
B 1
C 0
D -1
A \(-2\)
B \(-1\)
C \(1\)
D \(2\)
A \(\cos \alpha = \frac{{\sqrt 5 }}{3};\,\,\tan \alpha = - \frac{2}{3};\,\,\cot \alpha = - \frac{{\sqrt 5 }}{2}\)
B \(\cos \alpha = \frac{{\sqrt 5 }}{3};\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5};\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)
C \(\cos \alpha = \frac{{\sqrt 2 }}{3};\,\,\tan \alpha = \sqrt 2 ;\,\,\cot \alpha = \frac{1}{2}\)
D \(\cos \alpha = \frac{1}{3};\,\,\tan \alpha = 2;\,\,\cot \alpha = \frac{1}{2}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247