Bài 1. Rút gọn:
a) \(A = \left( {5x - 1} \right)\left( {x + 3} \right) - \left( {x - 2} \right)\left( {5x - 4} \right)\)
b) \(B = \left( {3a - 2b} \right)\left( {9{a^2} + 6ab + 4{b^2}} \right)\)
Bài 2. Chứng minh rằng giá trị của biểu thức: \(n\left( {2n - 3} \right) - 2n\left( {n + 2} \right)\) luôn chia hết cho 7, với mọi số nguyên n.
Bài 3. Biết \({x^4} - 3x + 2 = \left( {x - 1} \right)\left( {{x^3} + b{x^2} + ax - 2} \right)\). Tìm a, b.
Bài 1.
a) \(A = \left( {5{x^2} + 15x - x - 3} \right) - \left( {5{x^2} - 4x - 10 + 8} \right)\)
\( = 5{x^2} + 14x - 3 - 5{x^2} + 14x - 8 \)
\(= 28x - 11.\)
b) \(B = 27{a^3} + 18{a^2}b + 12a{b^2} - 18{a^2}b - 12a{b^2} - 8{b^3}\)
\(= 27{a^3} - 8{b^3}.\)
Bài 2. Ta có:
\(n\left( {2n - 3} \right) - 2n\left( {n + 2} \right)\)
\(= 2{n^2} - 3n - 2{n^2} - 4n\)
\(= - 7n\; \vdots \;7,\) với mọi số nguyên n.
Bài 3. Ta có:
\(\left( {x - 1} \right)\left( {{x^3} + b{x^2} + ax - 2} \right)\)
\( = {x^4} + b{x^3} + a{x^2} - 2x - {x^3} - b{x^2} - ax + 2\)
\( = {x^4} + \left( {b - 1} \right){x^3} + \left( {a - b} \right){x^2} + \left( { - 2 - a} \right)x + 2\)
Vậy: \({x^4} - 3x + 2 = {x^4} + (b - 1){x^3} + (a - b){x^2} + ( - 2 - a)x + 2\)
\( \Rightarrow b - 1 = 0;a - b = 0; \)\(\;- 2 - a = - 3 \Rightarrow b = 1;a = 1.\)
Copyright © 2021 HOCTAP247