Bài 1. Cộng các phân thức:
a) \({{{x^2} - x} \over {x - 2}} + {{4 - 3x} \over {x - 2}}\)
b) \({{a + 2b} \over {3a - b}} + {{2a - 5b} \over {b - 3a}}\)
c) \({2 \over {{x^2} - 9}} + {1 \over {x - 3}}\)
d) \({{2a} \over {25 - 10a + {a^2}}} + {{10} \over {{a^2} - 25}}\)
Bài 2. Chứng minh đẳng thức: \({{4x} \over {{x^2} - 4}} + {x \over {x + 2}} + {2 \over {x - 2}} = {{x + 2} \over {x - 2}}\)
Bài 1.
a) \({{{x^2} - x} \over {x - 2}} + {{4 - 3x} \over {x - 2}} = {{{x^2} - x + 4 - 3x} \over {x - 2}} = {{{x^2} - 4x + 4} \over {x - 2}} \)\(\;= {{{{\left( {x - 2} \right)}^2}} \over {x - 2}} = x - 2\)
b) \({{a + 2b} \over {3a - b}} + {{2a - 5b} \over {b - 3a}} = {{a + 2b} \over {3a - b}} + {{5b - 2a} \over {3a - b}} \)\(\;= {{a + 2b + 5b - 2a} \over {3a - b}} = {{7b - a} \over {3a - b}}\)
c)\(MTC = {x^2} - 9 = \left( {x - 3} \right)\left( {x + 3} \right)\)
Vậy \({2 \over {{x^2} - 9}} + {1 \over {x - 3}} = {2 \over {{x^2} - 9}} + {{x + 3} \over {{x^2} - 9}} = {{x + 5} \over {{x^2} - 9}}\)
d) \(MTC = {\left( {a - 5} \right)^2}\left( {a + 5} \right)\)
Vậy \({{2a} \over {25 - 10a + {a^2}}} + {{10} \over {{a^2} - 25}} \)
\(= {{2a\left( {a + 5} \right)} \over {{{\left( {a - 5} \right)}^2}\left( {a + 5} \right)}} + {{10\left( {a - 5} \right)} \over {{{\left( {a - 5} \right)}^2}\left( {a + 5} \right)}}\)
\(={{2{a^2} + 10a + 10a - 50} \over {{{\left( {a - 5} \right)}^2}\left( {a + 5} \right)}} = {{2{a^2} + 20a - 50} \over {{{\left( {a - 5} \right)}^2}\left( {a + 5} \right)}}\)
Bài 2. Biến đổi vế trái (VT), ta có: \(MTC = {x^2} - 4\)
Vậy
\(VT = {{4x + x\left( {x + 2} \right) + 2\left( {x + 2} \right)} \over {{x^2} - 4}} \)
\(\;\;\;\;\;\;= {{4x + {x^2} - 2x + 2x + 4} \over {{x^2} - 4}}\)
\( \;\;\;\;\;\;\;= {{{x^2} + 4x + 4} \over {{x^2} - 4}} = {{{{\left( {x + 2} \right)}^2}} \over {\left( {x - 2} \right)\left( {x + 2} \right)}}\)
\(\;\;\;\;\;\;\;\;= {{x + 2} \over {x - 2}} = VP\)
Copyright © 2021 HOCTAP247