\({{2x} \over {{x^2} + 4x + 4}} + {{x + 1} \over {x + 2}} + {{2 - x} \over {{x^2} + 4x + 4}}\)
\(\eqalign{& {{2x} \over {{x^2} + 4x + 4}} + {{x + 1} \over {x + 2}} + {{2 - x} \over {{x^2} + 4x + 4}} \cr & = \left( {{{2x} \over {{x^2} + 4x + 4}} + {{2 - x} \over {{x^2} + 4x + 4}}} \right) + {{x + 1} \over {x + 2}} \cr & = {{2x + 2 - x} \over {{{\left( {x + 2} \right)}^2}}} + {{x + 1} \over {x + 2}} \cr & = {{x + 2} \over {{{\left( {x + 2} \right)}^2}}} + {{x + 1} \over {x + 2}} = {1 \over {x + 2}} + {{x + 1} \over {x + 2}} \cr & = {{1 + x + 1} \over {x + 2}} = {{x + 2} \over {x + 2}} = 1 \cr} \)
Copyright © 2021 HOCTAP247