a) Vẽ đồ thị hai hàm số sau trên cùng một mặt phẳng tọa độ:
y = 0,5x + 2 (1); y = 5 – 2x (2)
b) Gọi giao điểm của các đường thẳng y = 0,5x + 2 và y = 5 – 2x với trục hoành theo thứ tự là A, B và gọi giao điểm của hai đường thẳng đó là C.
Tìm tọa độ của các điểm A, B, C
c) Tính độ dài các đoạn thẳng AB, AC và BC (đơn vị đo trên các trục tọa độ là xentimet) (làm tròn đến chữ số thập phân thứ hai).
d) Tính các góc tạo bởi các đường thẳng có phương trình (1) và (2) với trục Ox (làm tròn đến phút).
+) Muốn tìm tọa độ giao điểm của 2 đường thẳng ta viết phương trình hoành độ giao điểm của 2 đường thẳng sau đó tìm được hoành độ từ đó tìm được tung độ.
+) Cách tính góc tạo bởi đường thẳng với trục Ox ta sử dụng hệ thức lượng trong tam giác vuông (gắn góc cần tìm vào 1 tam giác vuông bất kỳ, sử dụng tan ta sẽ tìm được).
Lời giải chi tiết
a) Đồ thị hàm số y = 0,5x + 2 là đường thẳng đi qua các điểm (0; 2) và (-4; 0)
Đồ thị hàm số y = 5 – 2x là đường thẳng đi qua các điểm (0; 5) và (2,5; 0)
b) Ta có A(-4; 0), B(2,5; 0)
Tìm tọa độ điểm C, ta có: phương trình hoành độ giao điểm của đường thẳng y = 0,5x + 2 và y = 5 – 2x là
0,5x + 2 = 5 – 2x ⇔ 2,5x = 3
⇔ x = 1,2
Do đó y = 0,5 . 1,2 + 2 = 2,6. Vậy C (1,2; 2,6)
c) Gọi D là hình chiếu của C trên Ox ta có:
CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)
∆ACD vuông tại D nên AC2 = CD2 + DA2
\( \Rightarrow AC = \sqrt {2,{6^2} + 5,{2^2}} = \sqrt {33,8} \approx 5,81(cm)\)
Tương tự : \(BC = \sqrt {B{{\rm{D}}^2} + C{{\rm{D}}^2}} \)
\(= \sqrt {1,{3^2} + 2,{6^2}} = \sqrt {8,45} \approx 2,91(cm)\)
d) Ta có ∆ACD vuông tại D nên \(tg\widehat {CA{\rm{D}}} = {{C{\rm{D}}} \over {A{\rm{D}}}} = {{2,6} \over {5,2}} = {1 \over 2}\)
\(\Rightarrow \widehat {CA{\rm{D}}} \approx {26^0}34'\). Góc tạo bởi đường thẳng \(y = {1 \over 2}x + 2\) và trục Ox là 26034’
Ta có ∆CBD vuông tại D nên \(tg\widehat {CB{\rm{D}}} = {{C{\rm{D}}} \over {B{\rm{D}}}} = {{2,6} \over {1,3}} = 2 \Rightarrow \widehat {CB{\rm{D}}} \approx {63^0}26'\)
Góc tạo bởi đường thẳng y = 5 – 2x và trục Ox là 1800 – 63026’ ≈ 116034’
Copyright © 2021 HOCTAP247