Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là \(1\) và \(2\). Hãy tính các cạnh góc vuông của tam giác này.
+) Tính cạnh huyền: \(a=b' +c'\).
+) Dùng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền \(b^2=b'.a;\ c^2=c'.a\), biết hình chiếu \(b',\ c'\) và cạnh huyền \(a\), tính được \(a,\ b\).
Lời giải chi tiết
Xét \(\Delta{ABC}\) vuông tại \(A\), đường cao \(AH\), \(BH=1,\ CH=2\). Ta cần tính \(AB,\ AC\).
Ta có: \(BC=BH+HC=1+2=3\)
Áp dụng hệ thức lượng trong \(\Delta{ABC}\) vuông tại \(A\), đường cao \(AH\), ta có:
* \(AB^2=BH.BC \Leftrightarrow AB^2=1.3=3\)
\(\Leftrightarrow AB = \sqrt 3\)
* \( AC^2=CH.BC \Leftrightarrow AC^2=2.3=6\)
\(\Leftrightarrow AC=\sqrt 6\)
Vậy độ dài hai cạnh góc vuông cần tìm là \(\sqrt 3\) và \(\sqrt 6\).
Copyright © 2021 HOCTAP247