Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{\begin{matrix} 3x - 2y = 11 & & \\ 4x - 5y = 3& & \end{matrix}\right.\); b) \(\left\{\begin{matrix} \dfrac{x}{2}- \dfrac{y}{3} = 1& & \\ 5x - 8y = 3& & \end{matrix}\right.\)
Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\)
+) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).
+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).
+) Thế \(y\) vào phương trình (1) tìm được \(x\).
Lời giải chi tiết
a) Ta có:
\(\left\{ \matrix{
3x - 2y = 11 \hfill \cr
4x - 5y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2y = 3x - 11 \hfill \cr
4x - 5y = 3 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
y = \dfrac{3x - 11}{2}\ (1) \hfill \cr
4x - 5.\dfrac{3x - 11}{ 2} = 3 \ (2) \hfill \cr} \right.\)
Giải phương trình \((2)\):
\(4x - 5.\dfrac{3x - 11}{ 2} = 3\)
\(\Leftrightarrow 4x - \dfrac{15x - 55}{ 2} = 3\)
\(\Leftrightarrow \dfrac{4x.2}{2} - \dfrac{15x - 55}{ 2} = \dfrac{3.2}{2}\)
\(\Leftrightarrow \dfrac{8x}{2} - \dfrac{15x - 55}{2} = \dfrac{6}{2}\)
\(\Leftrightarrow \dfrac{8x - 15x + 55}{2} = \dfrac{6}{2}\)
\(\Leftrightarrow 8x - 15x + 55 = 6\)
\(\Leftrightarrow - 7x = 6 - 55\)
\(\Leftrightarrow - 7x = - 49\)
\(\Leftrightarrow x=7\)
Thay \(x=7\) vào phương trình \((1)\), ta được:
\(y = \dfrac{3.7 - 11}{2}=5\)
Vậy hệ có nghiệm duy nhất là \((7; 5)\).
b) Ta có:
\(\left\{ \matrix{
\dfrac{x}{2} - \dfrac{y}{3} = 1 \hfill \cr
5x - 8y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\dfrac{x }{2} = 1 + \dfrac{y}{3} \hfill \cr
5x - 8y = 3 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x = 2 + \dfrac{2y}{3} \ (1) \hfill \cr
5{\left(2 + \dfrac{2y}{3} \right)} - 8y = 3 \ (2) \hfill \cr} \right.\)
Giải phương trình \((2)\), ta được:
\(5{\left(2 + \dfrac{2y}{3} \right)} - 8y = 3 \)
\( \Leftrightarrow 5.2 + 5. \dfrac{2y}{3}-8y = 3\)
\( \Leftrightarrow 10 + \dfrac{10y}{3} -8y =3 \)
\( \Leftrightarrow \dfrac{30}{3} +\dfrac{10y}{3} - \dfrac{24y}{3} = \dfrac{9}{3}\)
\( \Leftrightarrow 30+ 10y -24y=9\)
\( \Leftrightarrow -14y=9-30\)
\( \Leftrightarrow -14y=-21\)
\( \Leftrightarrow y=\dfrac{21}{14}\)
\( \Leftrightarrow y= \dfrac{3}{2}\)
Thay \(y= \dfrac{3}{2}\) vào \((1)\), ta được:
\(x = 2 + \dfrac{2. \dfrac{3}{2}}{3}=2+\dfrac{3}{3}=3.\)
Vậy hệ phương trình có nghiệm duy nhất \({\left(3; \dfrac{3}{2} \right)}.\)
Copyright © 2021 HOCTAP247