a) Xác định các hệ số \(a\) và \(b\), biết rằng hệ phương trình
\(\left\{\begin{matrix} 2x + by=-4 & & \\ bx - ay=-5& & \end{matrix}\right.\)
Có nghiệm là \((1; -2)\)
b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là \((\sqrt{2} - 1; \sqrt{2})\).
+) Thay các giá trị của \(x,\ y\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).
+) Giải hệ mới ta tìm được \(a,\ b\).
Lời giải chi tiết
a) Hệ phương trình có nghiệm là \((1; -2)\) khi và chỉ khi \((1; -2)\) thỏa mãn hệ phương trình. Thay \(x=1,\ y=-2\) vào hệ, ta có:
\(\left\{\begin{matrix} 2 - 2b=-4 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2b=6 & & \\ b+2a=-5 & & \end{matrix}\right. \)
\( \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 3+2a=-5 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -5 - 3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -8& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ a = -4 & & \end{matrix}\right.\)
Vậy \(a=-4,\ b=3\) thì hệ có nghiệm là \((1; -2)\).
b) Thay \(x=\sqrt 2 - 1;\ y= \sqrt 2\) vào hệ phương trình đã cho, ta có:
\(\left\{\begin{matrix} 2(\sqrt{2}-1)+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b\sqrt{2}= -2 - 2\sqrt{2} & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -(2 + \sqrt{2})(\sqrt{2}-1)+5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -\sqrt{2}+5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{-2+5\sqrt{2}}{2} & & \\ b = -(2+ \sqrt{2})& & \end{matrix}\right.\)
Vậy \(a = \dfrac{-2+5\sqrt{2}}{2},\ b=-(2+ \sqrt{2})\) thì hệ trên có nghiệm là \((\sqrt 2 -1; \sqrt 2)\).
Copyright © 2021 HOCTAP247