Hình viên phân là hình tròn giới hạn bởi một cung tròn và dây căng cung ấy. Hãy tính diện tích hình viên phân \(AmB\), biết góc ở tâm \(\widehat {AOB} = {60^0}\) và bán kính đường tròn là \(5,1 cm\) (h.64)
+) Diện tích hình viên phân = Diện tích cung tròn \(AmB\) - Diện tích tam giác \(OAB.\)
Lời giải chi tiết
\(∆OAB\) là tam giác đều có cạnh bằng \(R = 5,1cm\). Áp dụng công thức tính diện tích tam giác đều cạnh \(a\) là \({{{a^2}\sqrt 3 } \over 4}\) ta có
\({S_{\Delta OBC}} = {{{R^2}\sqrt 3 } \over 4}\) (1)
Diện tích hình quạt tròn \(AOB\) là:
\({{\pi .{R^2}{{.60}^0}} \over {{{360}^0}}} = {{\pi {R^2}} \over 6}\) (2)
Từ (1) và (2) suy ra diện tích hình viên phân là:
\({{\pi {R^2}} \over 6} - {{{R^2}\sqrt 3 } \over 4} = {R^2}\left( {{\pi \over 6} - {{\sqrt 3 } \over 4}} \right)\)
Thay \(R = 5,1\) ta có \(S\)viên phân ≈\( 2,4\) (\(cm^2\))
Copyright © 2021 HOCTAP247