Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 2. Dãy số Câu hỏi 5 trang 89 SGK Đại số và Giải tích 11

Câu hỏi 5 trang 89 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho các dãy số (un) và (vn) với un = 1 + \({1 \over n}\); vn = 5n – 1.

a) Tính u(n+1), v(n+1).

b) Chứng minh u(n+1) < un và v(n+1) > vn, với mọi n ∈ N^*.

Hướng dẫn giải

a) u(n+1) = 1 + 1/(n+1); v(n+1) = 5(n + 1) - 1 = 5n + 4

b) Ta có:

\({u_{n + 1}} - {u_n} = (1 + {1 \over {n + 1}}) - (1 + {1 \over n}) = {1 \over {n + 1}} - {1 \over n} = {{ - 1} \over {n(n + 1)}}\)

⇒ u(n+1) < un, ∀n ∈ N*

v(n+1) - vn = (5n + 4) - (5n - 1) = 5 > 0

⇒ v(n+1) > vn ,∀n ∈ N*


Copyright © 2021 HOCTAP247