Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 2. Dãy số Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao

Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 14. Chứng minh rằng dãy số \((u_n)\) với

\({u_n} = {{2n + 3} \over {3n + 2}}\)

Là một dãy số giảm và bị chặn.

Hướng dẫn giải

Ta có:

\(\eqalign{
& {u_n} = {{2n + 3} \over {3n + 2}} = {{{2 \over 3}\left( {3n + 2} \right) + {5 \over 3}} \over {3n + 2}} = {2 \over 3} + {5 \over {3\left( {3n + 2} \right)}} \cr
& {u_{n + 1}} - {u_n} = {5 \over 3}\left( {{1 \over {3n + 5}} - {1 \over {3n + 2}}} \right) < 0 \cr
& \Rightarrow {u_{n + 1}} < {u_n} \cr} \)

\(⇒ (u_n)\) là dãy số giảm

Ta lại có  \(0 < {{2n + 3} \over {3n + 2}} \le 1 \;\forall n \in\mathbb N^*\)

Vậy \((u_n)\) là dãy số giảm và bị chặn.

Copyright © 2021 HOCTAP247