Bài 16. Cho dãy số (un) xác định bởi
\({u_1} = 1\,\text{ và }\,{u_{n + 1}} = {u_n} + \left( {n + 1} \right){.2^n}\) với mọi \(n ≥ 1\)
a. Chứng minh rằng (un) là một dãy số tăng.
b. Chứng minh rằng
\({u_n} = 1 + \left( {n - 1} \right){.2^n}\) với mọi \(n ≥ 1\).
a. Từ hệ thức xác định dãy số (un), ta có:
\({u_{n + 1}} - {u_n} = \left( {n + 1} \right){.2^n} > 0\;\forall n \ge 1.\)
Do đó (un) là một dãy số tăng.
b. Ta sẽ chứng minh \({u_n} = 1 + \left( {n - 1} \right){.2^n}\) (1) với mọi \(n ≥ 1\), bằng phương pháp qui nạp.
+) Với \(n = 1\), ta có \({u_1} = 1 = 1 + \left( {1 - 1} \right){.2^1}.\) Như vậy (1) đúng khi \(n = 1\)
+) Giả sử (1) đúng khi \(n = k, k \in\mathbb N^*\), tức là:
\({u_k} = 1 + \left( {k - 1} \right){2^k}\)
+) Ta sẽ chứng minh (1) cũng đúng với \(n = k + 1\).
Thật vậy, từ hệ thức xác định dãy số (un) và giả thiết qui nạp, ta có :
\({u_{k + 1}} = {u_k} + \left( {k + 1} \right){.2^k} = 1 + \left( {k - 1} \right){.2^k} + \left( {k + 1} \right){.2^k} = 1 + k{.2^{k + 1}}\)
Vậy (1) đúng với mọi \(n ≥ 1\).
Copyright © 2021 HOCTAP247