Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 2. Dãy số Câu 10 trang 105 SGK Đại số và Giải tích 11 Nâng cao

Câu 10 trang 105 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 10. Tìm số hạng thứ 3 và số hạng thứ 5 của mỗi dãy số sau :

a. Dãy số (un) xác định bởi :

\({u_1} = 0\,\text{ và }\,{u_n} = {2 \over {u_{n - 1}^2 + 1}}\) với mọi \(n ≥ 2\) ;

b. Dãy số (un) xác định bởi :

\({u_1} = 1,{u_2} = - 2\,\text{ và }\,u_n={u_{n - 1}} - 2{u_{n - 2}}\) với mọi \(n ≥ 3\).

Hướng dẫn giải

a. Ta có:

\(\eqalign{
& {u_2} = {2 \over {u_1^2 + 1}} = 2 \cr
& {u_3} = {2 \over {u_2^2 + 1}} = {2 \over {{2^2} + 1}} = {2 \over 5} \cr
& {u_4} = {2 \over {u_3^2 + 1}} = {2 \over {{4 \over {25}} + 1}} = {{50} \over {29}} \cr
& {u_5} = {2 \over {u_4^2 + 1}} = {2 \over {{{\left( {{{50} \over {29}}} \right)}^2} + 1}} = {{1682} \over {3341}} \cr} \)

b. Ta có:

\(\eqalign{
& {u_3} = {u_2} - 2{u_1} = - 2 - 2.1 = - 4 \cr
& {u_4} = {u_3} - 2{u_2} = - 4 - 2\left( { - 2} \right) = 0 \cr
& {u_5} = {u_4} - 2{u_3} = 0-2.(-4)=8 \cr} \)

Copyright © 2021 HOCTAP247