Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 4. Cấp số nhân Bài 1 trang 103 SGK Đại số và Giải tích 11

Bài 1 trang 103 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh các dãy số \(( \frac{3}{5} . 2^n)\), \( (\frac{5}{2^{n}})\), \( ((-\frac{1}{2})^{n})\) là các cấp số nhân.

Hướng dẫn giải

Chứng minh \(\frac{{{u_{n + 1}}}}{{{u_n}}} = const\).

Lời giải chi tiết

a) Với mọi \(∀n\in {\mathbb N}^*\), ta có:

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\frac{3}{5}{{.2}^{n + 1}}}}{{\frac{3}{5}{{.2}^n}}} = 2 = const\)

Vậy dãy số đã cho là một câp số nhân với \(u_1= \frac{6}{5}\) và \(q = 2\).

b) Với mọi \(∀ n\in {\mathbb N}^*\), ta có:

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\frac{5}{{{2^{n + 1}}}}}}{{\frac{5}{{{2^n}}}}} = \frac{{{2^n}}}{{{2^{n + 1}}}} = \frac{1}{2} = const\)

Vậy dãy số đã cho là một cấp số nhân với \(u_1= \frac{5}{2}\)  và \(q= \frac{1}{2}\)

c) Với mọi \(∀ n\in {\mathbb N}^*\), ta có:

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - \frac{1}{2}} \right)}^{n + 1}}}}{{{{\left( { - \frac{1}{2}} \right)}^n}}} =  - \frac{1}{2} = const\)

Vậy dãy số đã cho là cấp số nhân với \(u_1= \frac{-1}{2}\) và \(q= \frac{-1}{2}\).

Copyright © 2021 HOCTAP247