Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 4. Cấp số nhân Bài 4 trang 104 SGK Đại số và Giải tích 11

Bài 4 trang 104 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là \(31\) và tổng của năm số hạng sau là \(62\).

Hướng dẫn giải

Sử dụng công thức số hạng tổng quát của CSN: \({u_n} = {u_1}{q^{n - 1}}\) và công thức tổng n số hạng đầu tiên của CSN: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Lời giải chi tiết

Giả sử có cấp số nhân: \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\)

Theo giả thiết ta có:

               \({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 31\).        (1)

               \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 62\).        (2)

Nhân hai vế của (1) với \(q\), ta được:  \({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)

 hay  \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)

\(\Rightarrow 62 = 31.q \Rightarrow q = 2\).

Ta có \({S_5} = 31 \Leftrightarrow \frac{{{u_1}\left( {1 - {2^5}} \right)}}{{1 - 2}} = 31 \Leftrightarrow 31{u_1} = 31 \Leftrightarrow {u_1} = 1\)

Vậy ta có cấp số nhân là: \(1, 2, 4, 8, 16, 32\).     

Copyright © 2021 HOCTAP247