Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 4. Cấp số nhân Câu 33 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Câu 33 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 33. Cho cấp số nhân (un) với công bội \(q ≠ 0\) và \({u_1} \ne 0\). Cho các số nguyên dương m và k, với \(m ≥ k\). Chứng minh rằng \({u_m} = {u_k}.{q^{m - k}}\)

Áp dụng 

a. Tìm công bội q của cấp số nhân (un) có \({u_4} = 2\) và \({u_7} =  - 686\).

b. Hỏi có tồn tại hay không một cấp số nhân (un) mà \({u_2} = 5\) và \({u_{22}} =  - 2000\) ?

Hướng dẫn giải

Ta có:

\(\eqalign{
& {u_m} = {u_1}.{q^{m - 1}}\,\,\left( 1 \right) \cr
& {u_k} = {u_1}.{q^{k - 1}}\,\,\left( 2 \right) \cr} \)

Lấy (1) chia (2) ta được :

\({{{u_m}} \over {{u_k}}} = {q^{m - k}} \Rightarrow {u_m} = {u_k}.{q^{m - k}}\)

Áp dụng :

a. Ta có:

\({{{u_7}} \over {{u_4}}} = {q^{7 - 4}} \Rightarrow {q^3} = - 343 \Rightarrow q = - 7\)

b. Không tồn tại

\({q^{20}} = {{{u_{22}}} \over {{u_2}}} = {{ - 2000} \over 5} < 0,\) vô lí.

Copyright © 2021 HOCTAP247