A.a > 0
B.a = 0
C.\[a \ne 0\;\;{\rm{ }}\;{\rm{ }}\;\;\]
D.a < 0
A.\[{a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\]
B. \[{a^{\frac{m}{n}}} = \sqrt[m]{{{a^n}}}\]
C. \[{a^{\frac{m}{n}}} = \sqrt[{mn}]{a}\]
D. \[{a^{\frac{m}{n}}} = \sqrt[m]{{{a^{mn}}}}\]
A.\[{a^{m.n}} = {a^m}.{a^n}\]
B.\[{a^{mn}} = {a^m} + {a^n}\]
C. \[{a^{mn}} = {a^m}:{a^n}\]
D. \[{a^{mn}} = {\left( {{a^m}} \right)^n}\]
A.\[{a^{\frac{1}{n}}} = \sqrt[n]{a}\]
B. \[{a^{\frac{1}{n}}} = \sqrt {{a^n}} \]
C. \[{a^{\frac{1}{n}}} = {a^n}\]
D. \[{a^{\frac{1}{n}}} = \sqrt[a]{n}\]
A.\[{a^m} > 1\]
B. \[{a^m} = 1\]
C. \[{a^m} < 1\]
D. \[{a^m} > 2\]
A.\[{a^m} < {b^m}\]
B. \[{a^m} > {b^m}\]
C. \[1 < {a^m} < {b^m}\]
D. \[{a^m} > {b^m} > 1\]
A.\[{a^m} > {b^m} > 1\]
B. \[1 < {a^m} < {b^m}\]
C. \[{a^m} < {b^m} < 1\]
D. \[1 > {a^m} > {b^m}\]
A.\[{b^n} = a\]
B. \[{a^n} = b\]
C. \[{a^n} = {b^n}\]
D. \[{n^a} = b\]
A.\[{\left( {\frac{3}{4}} \right)^m} > {\left( {\frac{1}{2}} \right)^m}\]
B. \[1 < {\left( {\frac{4}{3}} \right)^m}\]
C. \[{\left( {\frac{2}{3}} \right)^m} < {\left( {\frac{3}{4}} \right)^m}\]
D. \[{\left( {\frac{{13}}{7}} \right)^m} > {2^m}\]
A.\[{a^m} > {a^n} \Leftrightarrow m > n\]
B. \[{a^m} > {a^n} \Leftrightarrow m < n\]
C. \[{a^m} > {a^n} \Leftrightarrow m = n\]
D. \[{a^m} > {a^n} \Leftrightarrow m \le n\]
A.\[\sqrt[n]{{ab}} = \sqrt[n]{a}.\sqrt[n]{b}\]
B. \[\sqrt[n]{{{a^m}}} = \sqrt[n]{a}\sqrt[n]{m}\]
C. \[\sqrt[{mn}]{a} = \sqrt[n]{{{a^m}}}\]
D. \[\sqrt[n]{{\sqrt[m]{a}}} = \sqrt[n]{a}.\sqrt[m]{a}\]
A.\[\sqrt[{mn}]{a} = \sqrt[n]{a}\sqrt[m]{a}\]
B. \[\sqrt[{mn}]{a} = \sqrt[n]{{{a^m}}}\]
C. \[\sqrt[{mn}]{a} = \sqrt[m]{{{a^n}}}\]
D. \[\sqrt[{mn}]{a} = \sqrt[n]{{\sqrt[m]{a}}}\]
A.\[{\left( {\sqrt[{mn}]{a}} \right)^m} = \sqrt[n]{a}\]
B. \[\sqrt[{mn}]{{{a^m}}} = \sqrt[n]{a}\]
C. \[{\left( {\sqrt[{mn}]{{{a^m}}}} \right)^n} = a\]
D. \[{\left( {\sqrt[{mn}]{{{a^m}}}} \right)^n} = {a^n}\]
A.Nếu n chẵn thì \[\sqrt[n]{{{a^n}}} = a\]
B.Nếu n lẻ thì \[\sqrt[n]{{{a^n}}} = a\].
C.Nếu n chẵn thì \[\sqrt[n]{{{a^n}}} = - a\].
D.Nếu n lẻ thì \[\sqrt[n]{{{a^n}}} = - a\].
A.a < 0
B.a > 0
C.\[a \in R\]
D. \[a \in Z\]
A.\[{a^n}\]
B. \[{b^n}\]
C. \[{a^\alpha }\]
D. \[{b^\alpha }\]
A.\[{\left( {{2^x}} \right)^y} = {2^{x + y}}\]
B. \[\frac{{{2^x}}}{{{2^y}}} = {2^{\frac{x}{y}}}\]
C. \[{2^x}{.2^y} = {2^{x + y}}\]
D. \[{\left( {\frac{2}{3}} \right)^x} = \frac{{{2^x}}}{{{3^y}}}\]
A.\[{2^{\sqrt x }} = {x^{\sqrt 2 }}\]
B. \[{3^{\sqrt {xy} }} = {\left( {{3^{\sqrt x }}} \right)^{\sqrt y }}\]
C. \[\frac{{{3^{\sqrt[3]{x}}}}}{{{3^{\sqrt[3]{y}}}}} = {3^{\sqrt[3]{{x - y}}}}\]
D. \[{x^{\sqrt 3 }} = {y^{\sqrt 3 }}\]
A.\[P = {x^{\frac{2}{{15}}}}\]
B. \[P = {x^{\frac{7}{{15}}}}\]
C. \[P = {x^{\frac{{38}}{{15}}}}\]
d. \[P = {x^{\frac{5}{2}}}\]
A.P=1
B. \[P = {b^{\frac{1}{{30}}}}\]
C. \[P = {b^{\frac{6}{5}}}\]
D. P=b
A.\[P = {a^{\frac{1}{2}}}\]
B. \[P = {a^{\frac{9}{2}}}\]
C. \[P = {a^{\frac{{11}}{6}}}\]
D. \[P = {a^3}\]
A.\[P = {2^{\frac{{181}}{{90}}}}\]
B. \[P = {2^{\frac{{181}}{9}}}\]
C. \[P = {2^{\frac{5}{6}}}\]
D. \[P = {2^{\frac{5}{3}}}\]
A.\[P = \frac{{25}}{{2028}}\]
B. P = 2028
C.\[P = \frac{{{5^3}}}{{{2^{14}}}}\]
D. \[P = {5^4}{.2^{16}}\]
A.\[a \ge 3\;\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]
B. a < 3
C.2 < a ≤ 3
D. a > 2
A.a < 1
B.a = 1
C.1 < a < 2
D.a ≤ 1
A.\[P = 2\sqrt 6 - 5\]
B. \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}\]
C. \[P = {\left( {2\sqrt 6 + 5} \right)^{2020}}\]
D. \[P = 2\sqrt 6 + 5\]
A.a = 1
B.a = 2
C.a = 0
D.a = 3
A.m < n
B.m > n
C.m ≤ n
D.m = n
A.\[{a^2} < {b^2}\]
B. \[{a^{ - 2}} < {a^{ - 3}}\]
C. \[{a^{ - \frac{3}{2}}} < {b^{ - \frac{3}{2}}}\]
D. \[{b^{ - 2}} > {b^{ - \frac{5}{2}}}\]\[\]
A.\(\frac{1}{2}\)
B. C = 1
C. C = a + b
D. \[C = \sqrt a - \sqrt b \]
A.b;c;a
B.bc;a;b
C.c;b;a
D.b;a;c
A.\[P = a\sqrt[4]{b}\left( {\sqrt[4]{b} - \sqrt[4]{a}} \right)\]
B. \[P = \sqrt[4]{b}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)\]
C. \[P = \sqrt[4]{{ab}}\left( {\sqrt[4]{a} - \sqrt[4]{b}} \right)\]
D. \[P = a\sqrt[4]{b}\left( {\sqrt[4]{a} + \sqrt[4]{b}} \right)\]
A.\[P = \sqrt[3]{a} + \sqrt[3]{b}\]
B. \[P = a + b\]
C. \[P = \sqrt[3]{a} - \sqrt[3]{b}\]
D. \[P = a - b\]
A.A = a
B.A = −a
C. \[A = \frac{1}{a}\]
D. \[A = {a^{2\sqrt 2 - 1}}\]
A.\[\frac{{{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]
B. \[\frac{{{a^{2\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]
C. \[\frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]
D. 0
A.\[A = \left( {{2^e} - 1} \right){e^e}\]
B. \[\left( {1 - {2^e}} \right){e^e}\]
C. \[A = {e^e}\]
D. \[ - {e^e}\]
A.2
B. \(\frac{1}{2}\)
C. \[\frac{2}{{\sqrt 5 }}\]
D. \[\frac{2}{5}\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247