Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Phân tích các đa thức sau thành nhân tử:

a) x2 – 4x + 3;                     b) x2 + 5x + 4;

c) x2 – x – 6;                        d) x4 + 4

(Gợi ý câu d): Thêm và bớt 4x2 vào đa thức đã cho.

Hướng dẫn giải

Áp dụng các phương pháp: nhóm, tách, thêm bớt để xuất hiện nhân tử chung.

Lời giải chi tiết

a) 

\(\eqalign{
& {x^2}-4x + 3 = {x^2}-x - 3x + 3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = x\left( {x - 1} \right) - 3\left( {x - 1} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {x - 1} \right)\left( {x - 3} \right) \cr} \)

b) 

\(\eqalign{
& {x^2} + 5x + 4 = {x^2} + 4x + x + 4 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,= x\left( {x + 4} \right) + \left( {x + 4} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {x + 4} \right)\left( {x + 1} \right) \cr} \)

c) 

\(\eqalign{
& {x^2}-x-6 = {x^2} + 2x-3x-6 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\, = x\left( {x{\rm{ }} + {\rm{ }}2} \right) - 3\left( {x + 2} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\, = \left( {x + 2} \right)\left( {x - 3} \right) \cr} \)

d)

\(\eqalign{
& {x^4} + 4 = {x^4} + 4{x^2} + 4-4{x^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = \left[ {{{\left( {{x^2}} \right)}^2} + 2.{x^2}.2 + {2^2}} \right] - 4{x^2}\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = {({x^2} + 2)^2}-{\left( {2x} \right)^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = ({x^2} + 2-2x)({x^2} + 2 + 2x) \cr} \)

Copyright © 2021 HOCTAP247