Bài 1. Phân tích các đa thức sau thành nhân tử:
a) \({x^3} + 2{x^2}y + x{y^2} - 4x\)
b) \(8{a^3} + 4{a^2}b - 2a{b^2} - {b^3}\)
c) \({a^3} - {b^3} + 2b - 2a.\)
Bài 2. Tìm x, biết: \({x^2} + 4x + 3 = 0.\)
Bài 1.
a) \({x^3} + 2{x^2}y + x{y^2} - 4x \)
\(= x\left( {{x^2} + 2xy + {y^2} - 4} \right) \)
\(= x\left[ {{{\left( {x + y} \right)}^2} - 4} \right]\)
\( = x\left( {x + y + 2} \right)\left( {x + y - 2} \right).\)
b) \(8{a^3} + 4{a^2}b - 2a{b^2} - {b^3} \)
\(= \left( {8{a^3} - {b^3}} \right) + \left( {4{a^2}b - 2a{b^2}} \right)\)
\( = \left( {2a - b} \right)\left( {4{a^2} + 2ab + {b^2}} \right) + 2ab\left( {2a - b} \right)\)
\( = \left( {2a - b} \right)\left( {4{a^2} + 2ab + {b^2} + 2ab} \right)\)
\(= \left( {2a - b} \right){\left( {2a + b} \right)^2}\)
c) \({a^3} - {b^3} + 2b - 2a \)
\(= \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) - 2\left( {a - b} \right)\)
\( = \left( {a - b} \right)\left( {{a^2} + ab + {b^2} - 2} \right).\)
Bài 2.
\({x^2} + 4x + 3 = {x^2} + 3x + x + 3 \)
\(= x\left( {x + 3} \right) + \left( {x + 3} \right)\)
\(= \left( {x + 3} \right)\left( {x + 1} \right)\)
Vậy \(\left( {x + 3} \right)\left( {x + 1} \right) = 0\)
\(\Rightarrow x + 3 = 0\) hoặc \(x + 1 = 0\)
\( \Rightarrow x = - 3\) hoặc \(x = - 1.\)
Copyright © 2021 HOCTAP247