Giải hệ các phương trình:
a) \(\left\{\begin{matrix} 2(x + y)+ 3(x - y)=4 & & \\ (x + y)+2 (x - y)= 5& & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} 2(x -2)+ 3(1+ y)=-2 & & \\ 3(x -2)-2 (1+ y)=-3& & \end{matrix}\right.\)
Cách 1: Thực hiện nhân phá ngoặc thu gọn vế trái rồi áp dụng quy tắc cộng đại số để giải hệ phương trình.
Cách 2. Sử dụng phương pháp đặt ẩn phụ
+) Đặt điều kiện (nếu có).
+) Đặt ẩn phụ và điều kiện của ẩn (nếu có).
+) Giải hệ phương trình theo các ẩn đã đặt.
+) Thay kết quả tìm được vào ẩn ban đầu để tìm nghiệm của hệ.
Lời giải chi tiết
a) Cách 1: Thực hiện nhân phá ngoặc và thu gọn, ta được:
\(\left\{\begin{matrix} 2(x+y)+3(x-y) =4 & & \\ (x+y) +2(x-y) =5 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x+2y+3x-3y =4 & & \\ x+y +2x-2y =5 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}5x-y =4 & & \\ 3x-y =5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}2x =-1 & & \\ 3x-y =5 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x =-\dfrac{1}{2} & & \\ y =3x-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x =-\dfrac{1}{2} & & \\ y =3.\dfrac{-1}{2}-5 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix}x =-\dfrac{1}{2} & & \\ y =\dfrac{-13}{2} & & \end{matrix}\right.\)
Vậy hệ đã cho có nghiệm duy nhất là \({\left( \dfrac{-1}{2}; \dfrac{-13}{2} \right)}\).
Cách 2: Đặt ẩn phụ.
Đặt \(\left\{\begin{matrix}x+y=u & & \\ x-y=v & & \end{matrix}\right.\) ta có hệ phương trình mới (ẩn \(u,\ v\) )
\(\left\{\begin{matrix} 2u + 3v = 4 & & \\ u + 2v = 5& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2u + 3v = 4 & & \\ 2u + 4v = 10& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2u + 3v = 4 & & \\ -v = -6& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2u + 3v = 4 & & \\ v = 6& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2u = 4- 3 . 6 & & \\ v = 6& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} u = -7 & & \\ v = 6& & \end{matrix}\right.\)
Suy ra hệ đã cho tương đương với:
\(\left\{\begin{matrix} x+ y = -7 & & \\ x - y = 6& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2x = -1 & & \\ x - y = 6& & \end{matrix}\right.\)
\(\left\{\begin{matrix} x=\dfrac{-1}{2} & & \\ y = x- 6 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x =-\dfrac{1}{2} & & \\ y = -\dfrac{13}{2}& & \end{matrix}\right.\)
Vậy hệ đã cho có nghiệm duy nhất là \({\left( \dfrac{-1}{2}; \dfrac{-13}{2} \right)}\).
b) Thu gọn vế trái của hai phương trình, ta được:
\(\left\{\begin{matrix} 2(x-2)+3(1+y)=-2 & & \\ 3(x - 2)- 2(1+ y) = -3& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} 2x-4+3+3y=-2 & & \\ 3x - 6- 2-2 y = -3& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} 2x+3y=-1 & & \\ 3x-2 y = 5& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} 6x+9y=-3 & & \\ 6x-4 y = 10& & \end{matrix}\right.\)
⇔\(\left\{\begin{matrix} 6x+9y=-3 & & \\ 13y = -13& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} 6x=-3 - 9y & & \\ y = -1& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} 6x=6 & & \\ y = -1& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x=1 & & \\ y = -1& & \end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \((1; -1)\).
Copyright © 2021 HOCTAP247