Bài 2 trang 98 SGK Hình học 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Cho tam giác \(ABC\) có hai điểm \(M,N\)  sao cho 

\(\left\{ \matrix{
\overrightarrow {AM} = \alpha \overrightarrow {AB} \hfill \cr 
\overrightarrow {AN} = \beta \overrightarrow {AC} \hfill \cr} \right.\)

a) Hãy vẽ \(M, N\) khi \(\alpha  = {2 \over 3};\beta  =  - {2 \over 3}\)

b)  Hãy tìm mối liên hệ giữa \(α, β\) để \(MN//BC\)

Hướng dẫn giải

a) Ta có:

\(\eqalign{
& \overrightarrow {AM} = {2 \over 3}\overrightarrow {AB} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AM} \uparrow \uparrow \overrightarrow {AB} \hfill \cr
AM = {2 \over 3}AB \hfill \cr} \right. \cr
& \overrightarrow {AN} = - {2 \over 3}\overrightarrow {AC} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AN} \uparrow \downarrow \overrightarrow {AC} \hfill \cr
AN = {2 \over 3}AC \hfill \cr} \right. \cr} \)

Vậy \(M\) thuộc đoạn \(AB\) sao cho \(AM = {2 \over 3}AB \) và \(N\) thuộc tia đối của tia \(AC\) sao cho \(AN = {2 \over 3}AC .\)

 b) Ta có:

\(\eqalign{
& \overrightarrow {AM} = \alpha \overrightarrow {AB} \cr
& \overrightarrow {AN} = \beta \overrightarrow {AC} \cr
& \Rightarrow \overrightarrow {AM} - \overrightarrow {AN} = \alpha \overrightarrow {AB} - \beta \overrightarrow {AC} \cr
& \Rightarrow \overrightarrow {MN} = \alpha \overrightarrow {AB} - \beta \overrightarrow {AC} \cr
& \Rightarrow \overrightarrow {MN} = \alpha (\overrightarrow {AB} - {\beta \over \alpha }\overrightarrow {AC} ),\alpha \ne 0 \cr} \)

Ta cũng có: \(\overrightarrow {BC}  =  - (\overrightarrow {AB}  - \overrightarrow {AC} )\)

Do đó, để \(MN // BC\) thì

\(\begin{array}{l}
\overrightarrow {MN} = k\overrightarrow {BC} \\  \Leftrightarrow \beta \overrightarrow {AC} - \alpha \overrightarrow {AB} = k\overrightarrow {AC} - k\overrightarrow {AB} .\\
\Rightarrow \beta = \alpha = k.
\end{array}\)

Vậy \(MN//BC \Leftrightarrow \beta  = \alpha .\)

Copyright © 2021 HOCTAP247